

SCHOOL OF MEDICINE

Introduction

- The fibula free flap (FFF) is the workhorse flap for head and neck osteocutaneous reconstruction (1).
- Despite its many advantages, donor-site wound complications are a primary source of morbidity following flap harvest (2).
- Although lower extremity angiography, ultrasound (US), and other vascular studies are routinely used, predictors of donor-site morbidity following harvest remain poorly understood.
- The primary objective of this study was to identify factors associated with FFF donor-site wound complications (DSWC).

Methods:

- Retrospective analysis of patients undergoing FFF reconstruction at UC Davis during the years 2011-2021
- Multivariable logistic regression was used to identify independent predictors of donor-site wound complications.

Results

- 119 patients were identified. Majority of patients were male (N = 67, 56.3%) with a mean patient age of 62.6 (range, 17-88) years.
- 62.2% of patients had a history of tobacco abuse while 37.9% reported a history of alcohol abuse.
- Charlson Comorbidity Index (CCI) was tabulated with 67.2%, 21.0%, and 11.8% of patients having 0, 1, and ± 2 comorbidities, respectively.
- The most common indications for FFF reconstruction included squamous cell carcinoma (N = 75, 63.0%).
- The average ankle-brachial index (ABI) was 1.07 (range 0.69 - 1.36) with a mean of 3.7 (± 1.3) perforators identified.
- The average skin paddle harvest size was 73.8 cm2 (± 48.9).

Patier

History

Histor

Diabet

Histor prior 1

Doppl

Flap C

Metho

History of

History of

STSG Don

Predictors of donor-site complications following fibula free flap reconstruction

Department of Otolaryngology – Head and Neck Surgery, University of California–Davis, Sacramento, California, USA

	Number of Patients (%)				
nt Variable	Present DSWC	No DSWC			
y of Tobacco Abuse					
es	33 (68.8%)	41 (57.8%)			
No	15 (31.2%)	30 (42.2%)			
y of Alcohol Abuse					
es	25 (52.1%)	20 (28.2%)			
No	23 (47.9%)	51 (71.8%)			
tes					
es	5 (10.4%)	9 (12.7%)			
No	43 (89.6%)	62 (87.3%)			
y of Radiation or Chemotherapy o FFF					
es	18 (37.5%)	24 (33.8%)			
No	30 (62.5%)	47 (66.2%)			
er Study					
verage ABI (harvested leg) [SD]	1.074 (± 0.089)	1.063 (± 0.10)			
haracteristic					
lumber of perforators (SD)	3.73 (1.4548)	3.69 (1.1413)			
kin Paddle harvest site (SD) [cm ²]	75.74 (43.84)	72.41 (50.78)			
od of donor site closure					
rimary closure/Bilateral dvancement Flap	22 (45.8)	49 (69.0%)			
TSG with bolster or wound acuum	24 (50.0%)	21 (29.6%)			
ropeller flap	2 (4.2%)	1 (1.4%)			

Table 1. Comparisons of patients by fibula donor-site complication (*Independent t-test)

Odds Ratio with 95% Confidence Interva

Diabetes	••		-			
	Reference: No Previous history	of diabetes				
Tobacco Abuse	Reference: No Previous history of toba	acco abuse				
f Alcohol Abuse	Reference: No Previous history of alc	pohol abuse	•			
nor Site Closure	Reference: Prima	ary Closure				
	0 1	2	3	4	5	6

Figure 1. Odds ratio related with multivariable analysis of variables associated with DSWC

with A) mild postop cellulitis and B) dehiscence and delayed granulation

Authors: Soroush Ershadifar, BS; Machelle Wilson, PhD; Ugur Nur Basmaci, MD; Andrew C. Birkeland, MD; Dustin A. Silverman, MD

Summary

- A total of 48 (40.3%) patients developed a donor-site wound complication with an average time to diagnosis of 24 days (± 16) following surgery.
- In multivariable regression, history of alcohol abuse (p = 0.0083) and method of donor-site closure (p = 0.0368) were independent predictors of donor-site wound complications.
- STSG closure was associated with a 146% increased odds of wound complications (OR = 2.46, 1.11 – 5.43, 95% confidence interval).
- Patient age, BMI, CCI, skin paddle size, and doppler US characteristics were not predictive of postoperative donor-site morbidity.

Conclusions/Further Study

- History of alcohol abuse and method of donorsite closure, specifically STSG use, were predictive of donor-site wound complications.
- Donor-site complications following FFF harvest are a significant source of morbidity despite appropriate patient and flap selection following preoperative doppler US.
- We hypothesize that the insufficient vasculature bed needed for skin grafting can result in increased wound morbidity in the patient population.
- This study highlights unique lower extremity doppler US findings in patients undergoing FFF reconstruction in addition to modifiable risk factors associated with fibula donor-site morbidity.

References

- Shindo M, Fong BP, Funk GF, Karnell LH. The Fibula Osteocutaneous Flap in Head and Neck Reconstruction: A Critical Evaluation of Donor Site Morbidity. Arch Otolaryngol *Head Neck Surg.* 2000;126(12):1467–1472.
- Momoh AO, Yu P, Skoracki RJ, Liu S, Feng L, Hanasono MM. A prospective cohort study of fibula free flap donor-site morbidity. *Plast Reconstr Surg*. 2011;128(3):714-720.

Acknowledgements

Thank you to my mentors Drs. Silverman and Birkeland for your guidance and support on this project.